Copied to
clipboard

G = S32xDic3order 432 = 24·33

Direct product of S3, S3 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S32xDic3, D6.7S32, C3:Dic3:11D6, (C3xDic3):7D6, (S3xC6).17D6, C33:2(C22xC4), C33:5C4:1C22, (C32xC6).1C23, C32:4(C22xDic3), (C32xDic3):9C22, C2.1S33, C3:5(C4xS32), (C3xS32):3C4, C6.1(C2xS32), (S32xC6).3C2, (C2xS32).2S3, C3:1(C2xS3xDic3), (C3xS3):3(C4xS3), C32:11(S3xC2xC4), (C3xS3xDic3):9C2, C33:9(C2xC4):9C2, (Dic3xC3:S3):6C2, C3:S3:2(C2xDic3), (S3xC3:Dic3):7C2, (C2xC3:S3).27D6, (S3xC3xC6).1C22, (S3xC32):2(C2xC4), (C3xS3):1(C2xDic3), (C6xC3:S3).14C22, (C3xC6).50(C22xS3), (C3xC3:Dic3):8C22, (C3xC3:S3):1(C2xC4), SmallGroup(432,594)

Series: Derived Chief Lower central Upper central

C1C33 — S32xDic3
C1C3C32C33C32xC6S3xC3xC6S32xC6 — S32xDic3
C33 — S32xDic3
C1C2

Generators and relations for S32xDic3
 G = < a,b,c,d,e,f | a3=b2=c3=d2=e6=1, f2=e3, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 1244 in 270 conjugacy classes, 74 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, S3, C6, C6, C6, C2xC4, C23, C32, C32, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C22xC4, C3xS3, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, C4xS3, C2xDic3, C2xC12, C22xS3, C22xC6, C33, C3xDic3, C3xDic3, C3:Dic3, C3:Dic3, C3xC12, S32, S3xC6, S3xC6, C2xC3:S3, C62, S3xC2xC4, C22xDic3, S3xC32, C3xC3:S3, C32xC6, S3xDic3, S3xDic3, C6.D6, S3xC12, C6xDic3, C4xC3:S3, C2xC3:Dic3, C2xS32, S3xC2xC6, C32xDic3, C3xC3:Dic3, C33:5C4, C3xS32, S3xC3xC6, C6xC3:S3, C4xS32, C2xS3xDic3, C3xS3xDic3, S3xC3:Dic3, Dic3xC3:S3, C33:9(C2xC4), S32xC6, S32xDic3
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C22xC4, C4xS3, C2xDic3, C22xS3, S32, S3xC2xC4, C22xDic3, S3xDic3, C2xS32, C4xS32, C2xS3xDic3, S33, S32xDic3

Smallest permutation representation of S32xDic3
On 48 points
Generators in S48
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 45 47)(44 46 48)
(1 16)(2 17)(3 18)(4 13)(5 14)(6 15)(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 39 41)(38 40 42)(43 47 45)(44 48 46)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 20 16 23)(14 19 17 22)(15 24 18 21)(25 32 28 35)(26 31 29 34)(27 36 30 33)(37 44 40 47)(38 43 41 46)(39 48 42 45)

G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21)(25,32,28,35)(26,31,29,34)(27,36,30,33)(37,44,40,47)(38,43,41,46)(39,48,42,45)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,16)(2,17)(3,18)(4,13)(5,14)(6,15)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21)(25,32,28,35)(26,31,29,34)(27,36,30,33)(37,44,40,47)(38,43,41,46)(39,48,42,45) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,45,47),(44,46,48)], [(1,16),(2,17),(3,18),(4,13),(5,14),(6,15),(7,22),(8,23),(9,24),(10,19),(11,20),(12,21),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,39,41),(38,40,42),(43,47,45),(44,48,46)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,20,16,23),(14,19,17,22),(15,24,18,21),(25,32,28,35),(26,31,29,34),(27,36,30,33),(37,44,40,47),(38,43,41,46),(39,48,42,45)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E3F3G4A4B4C4D4E4F4G4H6A6B6C6D6E6F6G···6N6O6P6Q6R6S6T6U12A12B12C12D12E12F12G12H12I12J
order122222223333333444444446666666···6666666612121212121212121212
size11333399222444833999927272224446···681212121218186666121218181818

54 irreducible representations

dim1111111222222224444488
type++++++++++-++++-++-
imageC1C2C2C2C2C2C4S3S3D6D6Dic3D6D6C4xS3S32S32S3xDic3C2xS32C4xS32S33S32xDic3
kernelS32xDic3C3xS3xDic3S3xC3:Dic3Dic3xC3:S3C33:9(C2xC4)S32xC6C3xS32S3xDic3C2xS32C3xDic3C3:Dic3S32S3xC6C2xC3:S3C3xS3Dic3D6S3C6C3C2C1
# reps1221118212244181243211

Matrix representation of S32xDic3 in GL6(F13)

1210000
1200000
001000
000100
000010
000001
,
010000
100000
0012000
0001200
000010
000001
,
100000
010000
001000
000100
0000121
0000120
,
1200000
0120000
001000
000100
000001
000010
,
1200000
0120000
0001200
0011200
000010
000001
,
500000
050000
000100
001000
000010
000001

G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S32xDic3 in GAP, Magma, Sage, TeX

S_3^2\times {\rm Dic}_3
% in TeX

G:=Group("S3^2xDic3");
// GroupNames label

G:=SmallGroup(432,594);
// by ID

G=gap.SmallGroup(432,594);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,58,298,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^2=e^6=1,f^2=e^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<